1.

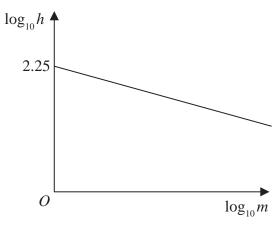


Figure 2

The resting heart rate, h, of a mammal, measured in beats per minute, is modelled by the equation

$$h = pm^q$$

where p and q are constants and m is the mass of the mammal measured in kg.

Figure 2 illustrates the linear relationship between $\log_{10} h$ and $\log_{10} m$

The line meets the vertical $\log_{10} h$ axis at 2.25 and has a gradient of -0.235

(a) Find, to 3 significant figures, the value of p and the value of q.

(3)

A particular mammal has a mass of 5kg and a resting heart rate of 119 beats per minute.

(b) Comment on the suitability of the model for this mammal.

(3)

(c) With reference to the model, interpret the value of the constant p.

(1)

2.	The distance a particular car can travel in a journey starting with a full tank of fuel was investigated.	
	 From a full tank of fuel, 40 litres remained in the car's fuel tank after the car had travelled 80 km 	
	 From a full tank of fuel, 25 litres remained in the car's fuel tank after the car had travelled 200 km 	
	Using a linear model , with V litres being the volume of fuel remaining in the car's fuel tank and d km being the distance the car had travelled,	
	(a) find an equation linking V with d .	(4)
	Given that, on a particular journey	
	• the fuel tank of the car was initially full	
	• the car continued until it ran out of fuel	
	find, according to the model,	
	(b) (i) the initial volume of fuel that was in the fuel tank of the car,	
	(ii) the distance that the car travelled on this journey.	(3)
	In fact the car travelled 320 km on this journey.	
	(c) Evaluate the model in light of this information.	
		(1)

3.	The height, h metres, of a plant, t years after it was first measured, is modelled by the equation	
	$h = 2.3 - 1.7e^{-0.2t} \qquad t \in \mathbb{R} t \geqslant 0$	
	Using the model,	
	(a) find the height of the plant when it was first measured,	(2)
	(b) show that, exactly 4 years after it was first measured, the plant was growing at approximately 15.3 cm per year.	(3)
	According to the model, there is a limit to the height to which this plant can grow.	
	(c) Deduce the value of this limit.	(1)

4.	The height,	h metres, of a	tree, t years after	being planted,	is modelled by	the equation

$$h^2 = at + b \qquad 0 \leqslant t < 25$$

where a and b are constants.

Given that

- the height of the tree was 2.60 m, exactly 2 years after being planted
- the height of the tree was 5.10 m, exactly 10 years after being planted
- (a) find a complete equation for the model, giving the values of a and b to 3 significant figures.

(4)

Given that the height of the tree was 7 m, exactly 20 years after being planted

(b) evaluate the model, giving reasons for your answer
--

(2)